Math, asked by Ataxia, 3 months ago

If √2 sin Ø - 1, find the value of sec²Ø - cosec²Ø​

Answers

Answered by fmkmanha
1

Answer:

Step-by-step explanation:

Attachments:
Answered by llMrIncrediblell
420

\underline{\underline{\sf{\maltese\:\:Given}}}

  • √2sinθ - 1

\underline{\underline{\sf{\maltese\:\:To\: Find}}}

  • sec²θ - cosec²θ

\underline{\underline{\sf{\maltese\:Calculations \:}}}

STEP 1 :-

⠀⠀⠀⠀⠀⠀As given √2sinθ - 1

Therefore,

 \longrightarrow \sinθ =  \frac{1 } { \sqrt{2} }

 \longrightarrow \sinθ =  45°

STEP 2 :-

⠀⠀⠀⠀⠀⠀θ = 45°

STEP 3 :-

⠀⠀⠀⠀⠀⠀Now, let's find sec²θ - cosec²θ

substituting the value of θ, we get :-

\longrightarrow ( { \sec}^{2} 45°)^{2}  - ( { \cosec}^{2} 45°)^{2}

Putting the value of sec²45° and cosec²45°, we get :-

\longrightarrow( \sqrt{2} )^{2}  - ( \sqrt{2} )^{2}

\longrightarrow2 - 2

\longrightarrow0

Hence, the value of sec²θ - cosec²θ is 0

_____________________________________________

LEARN MORE :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Similar questions