if 2 sin squared theta minus 5 sin theta + 4 equal to zero then find the value of sin theta + cos theta
Answers
Answered by
0
Answer:
Sinθ + Cosθ = (1 ±√3) /2
Step-by-step explanation:
Correction in Question :
if 2 sin squared theta minus 5 sin theta + 2 equal to zero then find the value of sin theta + cos theta
2Sin²θ - 5Sinθ + 2 = 0
=> 2Sin²θ - 4Sinθ - Sinθ + 2 = 0
=> 2Sinθ(Sinθ -2) -1(Sinθ -2) = 0
=> (Sinθ - 2)(2Sinθ - 1) = 0
=> Sinθ = 1/2 ( as Sinθ lies betwen -1 & 1)
Cos²θ = 1 - Sin²θ
=> Cos²θ = 1 - (1/2)²
=> Cos²θ = 3/4
=> Cosθ = ±√3 /2
Sinθ + Cosθ = 1/2 ±√3 /2
=> Sinθ + Cosθ = (1 ±√3) /2
Similar questions