Math, asked by ramadeshpande, 11 months ago

if 2 sin theta - 1 = 0 find the value of sec theta + tan theta = root 3

Answers

Answered by saurabh8659
1

please mark as brainlist

Attachments:
Answered by Anonymous
102

AnswEr :

 \Rightarrow2 \:  \sin( \theta)  - 1 = 0

 \Rightarrow2 \:  \sin( \theta)   =  1

 \Rightarrow\:  \sin( \theta) =  \dfrac{1}{2}

  • sin( 30° ) = \frac{1}{2}

 \Rightarrow \sin( \theta)  =  \sin(30 \degree)

The Value of θ = 30°

━━━━━━━━━━━━━━━━━━━━━━━━

Now Let's Head to the Question ;

 \large\longrightarrow \sec( \theta)  +  \tan( \theta)  =  \sqrt{3}

  • putting the Value of ( θ )

 \large\longrightarrow \sec(30 \degree)  +  \tan(30 \degree)  =  \sqrt{3}

  • sec( 30° ) = \frac{2}{ \sqrt{3} }
  • tan( 30° ) = \frac{1}{ \sqrt{3} }

 \large\longrightarrow \dfrac{2}{ \sqrt{3} }  +  \dfrac{1}{ \sqrt{3} }  =  \sqrt{3}

 \large\longrightarrow \dfrac{(2 + 1)}{ \sqrt{3} }  =  \sqrt{3}

 \large\longrightarrow \dfrac{3}{ \sqrt{3} }  =  \sqrt{3}

  • rationalizing the term

 \large\longrightarrow \dfrac{3}{ \sqrt{3} }  \times \dfrac{ \sqrt{3} }{ \sqrt{3} }  =  \sqrt{3}

 \large\longrightarrow \dfrac{3 \sqrt{3} }{ (\sqrt{3})^{2}  }  =  \sqrt{3}

 \large\longrightarrow \dfrac{ \cancel3 \sqrt{3} }{ \cancel3}  =  \sqrt{3}

 \large\longrightarrow  \sqrt{3}  =  \sqrt{3}  \:  \:  \:  \:  \:  \text{LHS  =  RHS}

Similar questions