Math, asked by policharla, 11 months ago

if 2 sin theta-1=0then prove that sec theta +Tan theta=root 3​

Answers

Answered by Anonymous
26

Question :

if 2sinθ -1 = 0

then , prove that secθ+ tanθ =√3

Formula's and values used :

1) \: secx =  \frac{1}{cosx}

2) \tan(x)  =  \frac{1}{ \cot(x) }

3) \csc(x)  =  \frac{1}{ \sin(x) }

4) \:  \sec( \frac{\pi}{6} )  =  \frac{2}{ \sqrt{3} }

5) \tan( \frac{\pi}{6} )  =  \frac{1}{ \sqrt{3} }

{\red{\huge{\underline{\mathbb{Answer:-}}}}}

2sinθ -1 = 0

⇒sinθ =\frac{1}{2}

or θ = \frac{\pi }{6}

we have to prove ;secθ+ tanθ =√3

LHS = secθ+ tanθ

put the value of θ

 =  \sec( \frac{\pi}{6} )  +  \tan( \frac{\pi}{6} )

 =  \frac{2}{ \sqrt{3} }  +  \frac{1}{ \sqrt{3} }

 =  \frac{2 + 1}{ \sqrt{3} }

 =  \frac{3}{ \sqrt{3} }  =  \sqrt{3}

RHS = √3

________________________

⇒LHS = RHS

{\purple{\boxed{\large{\bold{secθ+ tanθ =\sqrt{3} }}}}}

\huge{\bold{ Hence\: Proved }}

Answered by Anonymous
19

{\purple{\underline{\underline{\large{\mathtt{ANSWER:-}}}}}}

sec∅+tan∅=√3 [proved]

{\purple{\underline{\underline{\large{\mathtt{EXPLANATION:-}}}}}}

Given:-

  • 2sin∅ - 1 = 0

To prove:-

  • sec∅+tan∅=√3

Solution:-

{\sf{\green{2sin\theta-1=0}}}

{\sf{\implies{2sin\theta = 1}}}

{\sf{\implies{sin\theta =\frac{1}{2}}}}

{\sf{\implies{sin\theta =sin\: 30}}}

{\sf{\implies{\theta=30}}}

______________________________________

{\sf{\red{sec\theta+tan\theta}}}

{\sf{\implies{sec30\:+tan30}}}

{\sf{\implies{\frac{2}{\sqrt{3}}\:+\frac{1}{\sqrt{3}}}}}

{\sf{\implies{\frac{3}{\sqrt{3}}}}}

{\sf{\implies{\frac{3\sqrt{3}}{3}}}}

{\sf{\implies{\sqrt{3}(Proved)}}}

______________________________________

{\underline{\underline{\large{\mathtt{MORE INFORMATION:-}}}}}

Some values related to trigonometry:-

  • sin30° = 1/2
  • sin45° =1/√2
  • sin60° = √3/2

____________________________________

  • cos30° = √3/2
  • cos45° = 1/√2
  • cos60° =1/2

____________________________________

  • tan30° = 1/√3
  • tan45°= 1
  • tan60° = √3

____________________________________

Similar questions