If 2 sin² θ - cos² θ = 2, then find the value of θ.
Answers
Answered by
4
Given : 2 sin² θ - cos² θ = 2
➺ 2 sin² θ - (1 - sin² θ) = 2
➺ 3 sin² θ - 1 = 2
➺ 3 sin² θ = 3
➺ sin² θ = 1
➺ sin θ = 1
➺ θ = 90°.
☆ Therefore,
- Hence, the value of θ is 90°.
━━━━━━━━━━━━━━━━━━
Answered by
1
Given :
- 2sin²θ - cos²θ = 2
To Find :
- Value of θ = ?
Solution :
2sin²θ - cos²θ = 2
We know that cos²θ = 1 - sin²θ :
=> 2sin²θ - (1 - sin²θ) = 2
=> 2sin²θ - 1 + sin²θ = 2
=> 3sin²θ - 1 = 2
=> 3sin²θ = 2 + 1
=> 3sin²θ = 3
=> sin²θ = 3/3
=> sin²θ = 1
=> sinθ = √1
=> sinθ = 1
Now, we know that sin90° = 1 :
=> sinθ = sin90°
=> θ = 90°
Hence, value of θ is 90°.
Similar questions