Math, asked by reeva211, 1 month ago

if 2 sin²theta-cos²theta=2 then find the value of o​

Answers

Answered by abhi569
5

Answer:

90°

Step-by-step explanation:

⇒ 2sin²θ - cos²θ = 2

             Using cos²θ = 1 - sin²θ

⇒ 2sin²θ - (1 - sin²θ) = 2

⇒ 2sin²θ - 1 + sin²θ = 2

⇒ 3sin²θ = 3

⇒ sin²θ = 3/3

⇒ sin²θ = 1

⇒ sinθ = ± 1

          sinθ can't be negative(0<θ<90°), so

⇒ sinθ = 1 = sin90°

⇒ θ = 90°

Answered by Anonymous
25

Answer:

 \sf\tt\large{\red {\underline {\underline{⚘\;Question:}}}}

  • If
  • 2 {sin}^{2} theta -  {cos}^{2}theta = 2

  • then find the value of theta.

 \sf\tt\large{\green {\underline  {\underline{⚘\;Solution:}}}}

  • 2 {sin }^{2} theta -  {cos }^{2} theta = 2

  • Here by using formula which is ,

 {cos}^{2} theta = 1 -  {sin}^{2} theta

  • Then from this we get the result.

  • 2 {sin}^{2} theta - 1(1 -  {sin}^{2} theta)

From,

  • This we get that,

  • 3 {sin}^{2} theta - 1 +  {sin}^{2} theta = 2

  •  = 3 {sin}^{2} theta = 3

  •  {sin}^{2} theta =  \frac{3}{3}  = 1

  •  {sin}^{2} theta=1

  • sin \: theta =  \frac{ + }{ - } 1

Therefore ,

  • It cant be negative so ,

  • sin \: theta = 1 = sin {90}^{0}
  • Theta=90degree.

Hope it helps u mate .

Thank you .

Similar questions