if 2 sin2thita-cos2thita = 2,then find the value of thita.
Answers
Answered by
15
2 sin^2 A - cos^2 A = 2
2 sin^2 - ( - 2 cos^2 A + 3 cos^2 A ) = 2
2 sin^2 + 2 cos^A - 3 cos^2 A = 2
2( sin^2 A + cos^2 A ) - 3 cos^2 A = 2
2 ( 1 ) - 3 cos^2 A = 2
2 - 3 cos^2 A = 2
- 3 cos^2 A = 0
3 cos^2 A = 0
cos^2 A = 0
cos A = 0
cos A = 90°
Therefore the value of theta is 90°
Answered by
28
2 sin² A - cos² A = 2
2 sin²A - ( 1 - sin² A ) = 2
2 sin² A - 1 + sin²A = 2
3 sin²A = 2 + 1
3 sin² A = 3
sin²A = 3 / 3
sin²A = 1
sin A = 1
sinA = sin 90°
A = 90°
Therefore, value of theta is 90°
2 sin²A - ( 1 - sin² A ) = 2
2 sin² A - 1 + sin²A = 2
3 sin²A = 2 + 1
3 sin² A = 3
sin²A = 3 / 3
sin²A = 1
sin A = 1
sinA = sin 90°
A = 90°
Therefore, value of theta is 90°
Prakhar2908:
Fabulous Answer !
Similar questions