Math, asked by secret384, 11 months ago

if 2 sinA=1=√2 cosB and π/2<A<π , 3π/2<B<2π then find value of tanA+tanB/cosA-cosB​

Answers

Answered by sonuvuce
87

Answer:

Given

2sinA = 1

⇒ sinA = 1/2 = sin30°

⇒ A = 30°

Also, √2 cosB = 1

⇒ cosB = 1/√2 = cos45°

⇒ B = 45°

Therefore

\frac{\tan A+\tan B}{\cos A-\cos B}

=\frac{\tan 30^\circ+\tan 45^\circ}{\cos 30^\circ-\cos 45^\circ}

=\frac{(1/\sqrt{3}) +1}{(\sqrt{3}/2)-(1/\sqrt{2})}

=\frac{\sqrt{3}+1}{\sqrt{3}} \times \frac{2}{\sqrt{3}-\sqrt{2}}

=\frac{\sqrt{3}+3}{3} \times \frac{2(\sqrt{3}+\sqrt{2})}{3-2}

=\frac{2}{3}\times (\sqrt{3}+\sqrt{2})(\sqrt{3}+3})

=\frac{2}{3}(\sqrt{3}+\sqrt{2})(\sqrt{3}+3})

Answered by snehasagar1712
40

Answer is give below in attachment

Step-by-step explanation:

Attachments:
Similar questions