Math, asked by narwelkardurvesh, 7 months ago

If 2 sinA = 1 = √2 cosB and π
/2 < A < π,


/2< B < 2π, then find the value of

tanA+tanB/cosA-cosB​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:2sinA = 1 \:  \: and \: \dfrac{\pi}{2}  &lt; A &lt; \pi

\rm :\longmapsto\:sinA =  \dfrac{1}{2}

As A lies in second quadrant

\rm :\longmapsto\:A = \dfrac{5\pi}{6}

Consider,

\rm :\longmapsto\:cosA

 \rm \:  \:  =  \: cos\dfrac{5\pi}{6}

 \rm \:  \:  =  \: cos \bigg(\pi - \dfrac{\pi}{6} \bigg)

 \rm \:  \:  =  -  \: cos \bigg(\dfrac{\pi}{6} \bigg)

 \rm \:  \:  =  \:  -  \: \dfrac{ \sqrt{3} }{2}

\bf\implies \:cosA =  -  \: \dfrac{ \sqrt{3} }{2}

Consider,

\rm :\longmapsto\:tanA

 \rm \:  \:  =  \: tan\dfrac{5\pi}{6}

 \rm \:  \:  =  \: tan \bigg(\pi - \dfrac{\pi}{6} \bigg)

 \rm \:  \:  =  -  \: tan \bigg(\dfrac{\pi}{6} \bigg)

 \rm \:  \:  =  \:  -  \: \dfrac{1}{ \sqrt{3} }

\bf\implies \:tanA =  -  \: \dfrac{1}{ \sqrt{3} }

Also,

Given that,

\rm :\longmapsto\: \sqrt{2}cosB = 1 \:  \: and \: \dfrac{3\pi}{2} &lt; B &lt; 2\pi

\rm :\longmapsto\:cosB = \dfrac{1}{ \sqrt{2} }

As B lies in fourth quadrant,

\rm :\longmapsto\:B = \dfrac{7\pi}{4}

Consider,

\rm :\longmapsto\:tanB

 \rm \:  \:  =  \: tan\dfrac{7\pi}{4}

 \rm \:  \:  =  \: tan \bigg(2\pi - \dfrac{\pi}{4} \bigg)

 \rm \:  \:  =  -  \: tan \bigg(\dfrac{\pi}{4} \bigg)

 \rm \:  \:  =  \:  -  \: 1

\bf\implies \:tanB =  -  \: 1

Consider,

\bf :\longmapsto\:\dfrac{tanA + tanB}{cosA - cosB}

 \rm \:  \:  =  \: \dfrac{ - \dfrac{1}{ \sqrt{3} } \:   -  \: 1}{ -  \: \dfrac{ \sqrt{3} }{2}   \: -  \: \dfrac{1}{ \sqrt{2} } }

 \rm \:  \:  =  \: \dfrac{  \dfrac{ - 1 -  \sqrt{3} }{ \sqrt{3} } \: }{ \: \dfrac{  - \sqrt{3} -  \sqrt{2}  }{2} }

 \rm \:  \:  =  \: \dfrac{  \dfrac{ 1 +  \sqrt{3} }{ \sqrt{3} } \: }{ \: \dfrac{\sqrt{3} + \sqrt{2}  }{2} }

 \rm \:  \:  =  \: \dfrac{2 + 2 \sqrt{3} }{3 +  \sqrt{6} }

 \rm \:  \:  =  \: \dfrac{2 + 2 \sqrt{3} }{3 +  \sqrt{6} }  \times  \dfrac{3 -  \sqrt{6} }{3 -  \sqrt{6} }

 \rm \:  \:  =  \: \dfrac{6 - 2 \sqrt{6}  + 6 \sqrt{3}  - 6 \sqrt{2} }{9 - 6}

 \rm \:  \:  =  \: \dfrac{6 - 2 \sqrt{6}  + 6 \sqrt{3}  - 6 \sqrt{2} }{3}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions