If 2 sinA = 1 = √2 cosB and π
/2 < A < π,
3π
/2< B < 2π, then find the value of
tanA+tanB/cosA-cosB
Answers
Given that
As A lies in second quadrant
Consider,
Consider,
Also,
Given that,
As B lies in fourth quadrant,
Consider,
Consider,
Additional Information :-
Sign of Trigonometric ratios in Quadrants
sin (90°-θ) = cos θ
cos (90°-θ) = sin θ
tan (90°-θ) = cot θ
csc (90°-θ) = sec θ
sec (90°-θ) = csc θ
cot (90°-θ) = tan θ
sin (90°+θ) = cos θ
cos (90°+θ) = -sin θ
tan (90°+θ) = -cot θ
csc (90°+θ) = sec θ
sec (90°+θ) = -csc θ
cot (90°+θ) = -tan θ
sin (180°-θ) = sin θ
cos (180°-θ) = -cos θ
tan (180°-θ) = -tan θ
csc (180°-θ) = csc θ
sec (180°-θ) = -sec θ
cot (180°-θ) = -cot θ
sin (180°+θ) = -sin θ
cos (180°+θ) = -cos θ
tan (180°+θ) = tan θ
csc (180°+θ) = -csc θ
sec (180°+θ) = -sec θ
cot (180°+θ) = cot θ
sin (270°-θ) = -cos θ
cos (270°-θ) = -sin θ
tan (270°-θ) = cot θ
csc (270°-θ) = -sec θ
sec (270°-θ) = -csc θ
cot (270°-θ) = tan θ
sin (270°+θ) = -cos θ
cos (270°+θ) = sin θ
tan (270°+θ) = -cot θ
csc (270°+θ) = -sec θ
sec (270°+θ) = cos θ
cot (270°+θ) = -tan θ