Math, asked by vihann, 11 months ago

If 2 sinA = 1 = 2 cosB and <A<t,
* < B < 27, then find the value of
tan A+tan B
COS A-cos B​

Answers

Answered by ihrishi
7

Step-by-step explanation:

2sinA  = 1 = 2cosB \\  \implies \: 2sinA  = 1  \\ \implies \: sinA  =  \frac{1}{2}   \\ \implies \: sinA  =  sin30 \degree \\  \implies \: A  =  30 \degree \\\\ 1 = 2cosB \\  \implies \: 2cosB  = 1  \\ \implies \: cosB  =  \frac{1}{2}   \\ \implies \: cosB  =  cos60 \degree \\ \implies B  =  60 \degree  \\ now \\ tanA \:  + tanB  \\ = tan30 \degree \:  + tan60 \degree \\  =  \frac{1}{ \sqrt{3} }   +  \sqrt{3}  \\  =  \frac{1 + 3}{ \sqrt{3} }  \\   \fbox{ \therefore \: tanA \:  + tanB  = \frac{4}{ \sqrt{3} }  }\\ cosA \:   -  cosB  \\ = cos30 \degree \:   -  cos60 \degree \\  =  \frac{ \sqrt{3} }{2}   -   \frac{1}{2}  \\    \fbox{\therefore \: cosA \:   -  cosB =  \frac{ \sqrt{3}  -  1 }{2} } \:

Similar questions