Math, asked by Uvnar5777, 1 year ago

If 2 tan a=3 tan b prove that tan(a-b)=sin2b/(5-cos2b)

Answers

Answered by Swarup1998
7

Trigonometric Problem

Given: 2\:tanA=3\:tanB

To prove: tan(A-B)=\frac{sin2B}{5-cos2B}

Step-by-step explanation:

L.H.S. =tan(A-B)

=\frac{tanA-tanB}{1+tanA\:tanB}

=\frac{\frac{3}{2}\:tanB-tanB}{1+\frac{3}{2}tanB\:tanB}

=\frac{\frac{1}{2}\:tanB}{1+\frac{3}{2}\:tan^{2}B}

=\frac{tanB}{2+3\:tan^{2}B}

=\frac{2\:tanB}{4+6\:tan^{2}B}

=\frac{2\:tanB}{5+5tan^{2}B-1+tan^{2}B}

=\frac{2\:tanB}{5(1+tan^{2}B)-(1-tan^{2}B)}

=\frac{\frac{2\:tanB}{1+tan^{2}B}}{\frac{5(1+tan^{2}B)-(1-tan^{2}B)}{1+tan^{2}B}}

=\frac{\frac{2\:tanB}{1+tan^{2}B}}{5-\frac{1-tan^{2}B}{1+tan^{2}B}}

=\frac{sin2B}{5-cos2B}

= R. H. S.

Hence proved.

Similar questions