If 2 tan B+cot B = Tan A, prove that 2 tan (A-B) = cot B.
Answers
Answered by
1
Answer:
13579953455467%#&(&45754789843577678
Answered by
2
Answer:
Step-by-step explanation:
2tan(A - B)
2{(tanA - tanB)/(1+tanA.tanB)}
now substitute for tanA = 2tanB + cot B,
2{(2tanB + cotB - tanB)/(1 + (2tanB + cotB).tanB)}
2{(tanB + cotB)/(2 + 2tan^2B)} (using cotB*tanB = 1)
{(tanB + cotB)/(1 + tan^2B)}
cotB{(tan^2B + 1)/(1 + tan^2B)} (using cotB*tanB = 1)
cotB
Similar questions