Math, asked by adi123rau456, 2 months ago

If 2 tan B+cot B = Tan A, prove that 2 tan (A-B) = cot B.​

Answers

Answered by megtamang05
1

Answer:

13579953455467%#&(&45754789843577678

Answered by sainisapna2017
2

Answer:

Step-by-step explanation:

2tan(A - B)

2{(tanA - tanB)/(1+tanA.tanB)}

now substitute for tanA = 2tanB + cot B,

2{(2tanB + cotB - tanB)/(1 + (2tanB + cotB).tanB)}

2{(tanB + cotB)/(2 + 2tan^2B)}   (using cotB*tanB = 1)

{(tanB + cotB)/(1 + tan^2B)}

cotB{(tan^2B + 1)/(1 + tan^2B)}   (using cotB*tanB = 1)

cotB

Similar questions