Math, asked by Raek364, 4 months ago

If θ.∅ = π/2 then show that [cos2θ cosθ sinθ /cosθ sinθ sin2θ] [cos2∅ cos∅sin∅/cos∅ sin∅sin2∅] =0

Answers

Answered by farhaanaarif84
0

Answer:

Given, AB=0

2×2

⇒[

cos

2

θ

cosθsinθ

cosθsinθ

sin

2

θ

][

cos

2

ϕ

cosϕsinϕ

cosϕsinϕ

sin

2

ϕ

]=[

0

0

0

0

]

⇒[

cos

2

θcos

2

ϕ+cosθcosϕsinθsinϕ

cosθsinθcos

2

ϕ+sin

2

θcosϕsinϕ

cos

2

θcosϕsinϕ+sin

2

ϕcosθsinθ

cosθsinθcosϕsinϕ+sin

2

θsin

2

ϕ

]=[

0

0

0

0

]

⇒[

cosθcosϕcos(θ−ϕ)

cosϕsinθcos(θ−ϕ)

cosθsinϕcos(θ−ϕ)

sinϕsinθcos(θ−ϕ)

]=[

0

0

0

0

]

⇒cos(θ−ϕ)=0

⇒cos(θ−ϕ)=cos

2

π

⇒θ−ϕ=nπ+

2

π

⇒θ−ϕ=(2n+1)

2

π

,n∈Z

Similar questions