Math, asked by akshayakumar0008, 1 month ago

if 2 to power 2x=5to the power 5y=100 to the power 3z then prove 5xy-15yz-6xz=0​

Answers

Answered by anindyaadhikari13
13

\textsf{\large{\underline{Correct Question}:}}

  • If 2²ˣ = 5⁵ʸ = 100³ᶻ then prove that 5xy - 30yz - 6xz = 0

\textsf{\large{\underline{Solution}:}}

Let us assume that:

 \rm: \longmapsto {2}^{x} =  {5}^{5y} =  {100}^{3z}  = k

Therefore:

 \rm: \longmapsto {2}^{x}   = k

 \rm: \longmapsto 2 =  {k}^{^{1}/_{x}}  - (i)

Similarly, we can write:

 \rm: \longmapsto 5=  {k}^{^{1}/_{5y}}  - (ii)

 \rm: \longmapsto 100=  {k}^{^{1}/_{3z}}  - (iii)

Again:

 \rm: \longmapsto 100 =  {5}^{2} \times  {2}^{2}

From (i), (ii) and (iii), we can write:

 \rm: \longmapsto {k}^{^{1}/_{3z}}  =  {k}^{^{2}/_{5y}}  \times  {k}^{^{2}/_{x}}

 \rm: \longmapsto {k}^{^{1}/_{3z}}  =  {k}^{^{2}/_{5y} + ^{2}/_{x}}

Comparing base, we get:

 \rm: \longmapsto  \dfrac{1}{3z}  =  \dfrac{2}{5y} +  \dfrac{2}{x}

 \rm: \longmapsto  \dfrac{1}{3z}  =  \dfrac{2x + 10y}{5xy}

On cross multiplying, we get:

 \rm: \longmapsto  5xy = 3z(2x + 10y)

 \rm: \longmapsto  5xy = 6xz + 30yz

 \rm: \longmapsto  5xy  - 30yz - 6xz = 0

Hence Proved.!!

\texttt{\textsf{\large{\underline{Learn More}:}}}

Law of Indices: If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

\rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

\rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

\rm 4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

\rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

\rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

\rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

\rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1


anindyaadhikari13: Thanks for the brainliest :)
Similar questions