if 2 to the power a is equal to 3 to the power b is equal to 6 to the power C then prove that C equals to a b by a + b
Answers
Answer:
Step-by-step explanation:
Now,
Step-by-step explanation:
mathsf{c=\frac{ab}{a+b}}}
Step-by-step explanation:
\textsf{Given:}Given:
\mathf{2^a=3^b=6^c=k(say)}\mathf2
a
=3
b
=6
c
=k(say)
\mathf{2^a=k,\;\;\;3^b=k,\;\;\;6^c=k}\mathf2
a
=k,3
b
=k,6
c
=k
\mathf{\implies\;2=k^{\frac{1}{a}},\;\;\;3=2=k^{\frac{1}{b}},\;\;\;6=k^{\frac{1}{c}}}\mathf⟹2=k
a
1
,3=2=k
b
1
,6=k
c
1
Now,
\mathsf{6=k^{\frac{1}{c}}}6=k
c
1
\mathsf{\implies\;2{\times}3=k^{\frac{1}{c}}}⟹2×3=k
c
1
\mathsf{\implies\;k^{\frac{1}{a}}{\times}k^{\frac{1}{b}}=k^{\frac{1}{c}}}⟹k
a
1
×k
b
1
=k
c
1
\mathsf{\implies\;k^{\frac{1}{a}+\frac{1}{b}}=k^{\frac{1}{c}}}⟹k
a
1
+
b
1
=k
c
1
\mathsf{\implies\;k^{\frac{a+b}{ab}}=k^{\frac{1}{c}}}⟹k
ab
a+b
=k
c
1
\textsf{Equating powers on both sides, we get}Equating powers on both sides, we get
\mathsf{\frac{a+b}{ab}=\frac{1}{c}}
ab
a+b
=
c
1
\textsf{Taking reciprocals on both sides, we get}Taking reciprocals on both sides, we get
\mathsf{\frac{ab}{a+b}=c}
a+b
ab
=c
\implies\boxed{\mathsf{c=\frac{ab}{a+b}}}⟹
c=
a+b
ab