Math, asked by bg2816290dhruv, 11 months ago

if 2 to the power x=3 to the power y=12 to the power z ,then show that 1/z=1/y+2/x

Answers

Answered by Anonymous
3

Solution:-

Given :-

 \rm \: {2}^{x} = {3}^{y} = 12^{z}

To prove

 \to \rm \: \dfrac{1}{z} - \dfrac{1}{y} = \dfrac{2}{x}

Now we can write as

 \rm \to \: \dfrac{1}{z} = \dfrac{1}{y} + \dfrac{2}{x}

Let

 \rm \: {2}^{x} = {3}^{y} = 12^{z} = k

Now we can say

 \rm \: {2}^{x} =k, {3}^{y} = k,12^{z} = k

Take

 \rm \: {2}^{x} = k

take log on both side

 \to\rm \: log2 {}^{x} = log \: k

 \rm \to \: x log \: 2 = log \: k

 \rm \: \to \: \dfrac{1}{x} = \dfrac{ log \: 2 }{ log \: k }

By using logarithmic properties

 \to \rm \: \dfrac{1}{x} = log_{k}2

Now take

 \rm \: {3}^{y} = k

We can write as

 \rm \: \to \: \dfrac{1}{y} = log_{k}3

now take

 \rm12 {}^{z} = k

We can write as

 \to \rm \dfrac{1}{z} = log_{k}12

Take RHS

\to \rm \dfrac{1}{z} = log_{k}12

Using logarithmic properties

\to \rm \dfrac{1}{z} = log_{k}( {2}^{2} \times 3)

 \to \rm \dfrac{1}{z} = log_{k} 2 {}^{2} + log_{k}3

 \to \rm \dfrac{1}{z} =2 log_{k} 2 {}^{} + log_{k}3

 \boxed{ \rm \to \: \dfrac{1}{z} = \dfrac{2}{x} + \dfrac{1}{y} }

Hence proved

Similar questions