Math, asked by mayuri6703, 1 year ago

if 2 to the power X = 3 to the power Y = 6 to the power - Z. Then prove 1/X + 1/Y + 1/Z = 0

Answers

Answered by shanujindal48p68s3s
3

 {2}^{x}  =  {3}^{y}  =  {6}^{ - z}  = k \\ 2 =   {k}^{ \frac{1}{x} }  \\ 3 =  {k}^{ \frac{1}{y} }  \\ 6 =  {k}^{ \frac{1}{ - z} }
Now we know that
2 \times 3 = 6 \\  {k}^{ \frac{1}{x} }  \times  {k}^{ \frac{1}{y} }  =  {k}^{ \frac{1}{ - z} }  \\  {k}^{ \frac{1}{x} +  \frac{1}{y}  }  =  {k}^{ \frac{1}{ - z} }  \\  \frac{1}{x}  +  \frac{1}{y}  =  -  \frac{1}{z}  \\  \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}  = 0
Mark it as the brainliest answer
Similar questions