Math, asked by YagamiLight, 1 year ago

if 2^(x+1)=3^(1-x), then find the value of x

Answers

Answered by YASH3100
2
HEYA!!!


HERE IS YOUR ANSWER,


=> Take log on both sides,

=> (x+1)log2 = (1-x)log3

=> (x+1)/(1-x) = log3/log2

=> Take componendo and dividendo on both sides:

=> 2/2x = (log3+log2)/(log3-log2)

=> Take reciprocal,

=> x = (log3-log2)/(log3+log2)

=> Since the values for Log3 = 0.4771 and Log2 = 0.3010

Therefore,

=> x = 0.2263


HOPE IT HELPS YOU,
THANK YOU.☺️☺️

YagamiLight: what is componendo and dividendo
YASH3100: See, if you have a/b and if you apply componendo and dividendo then your answer would be (a+b)/(a-b)
Answered by Anonymous
3
math]2^{x+1}=3^{1-x}[/math]

[math](e^{\ln(2)})^{x+1}=(e^{\ln(3)})^{1-x}[/math]

[math]e^{\ln(2)(x+1)}=e^{\ln(3)(1-x)}[/math]

[math]\ln(2)(x+1)=\ln(3)(1-x)[/math]

[math]\ln(2)x+\ln(2)=\ln(3)-\ln(3)x[/math]

[math](\ln(2)+\ln(3))x=\ln(3)-\ln(2)[/math]

[math]\ln(6)x=\ln(3)-\ln(2)[/math]

[math]x=\frac{\ln(3)-\ln(2)}{\ln(6)}[/math]

Similar questions