If 2[x] + 1 = 3[x + 1] – 8, where [·] represents the greatest integer function, then value of [x + 4] equals
Answers
it has given that , 2[x] + 1 = 3[x + 1] - 8 where [.] represents the greatest integer function.
we have to find the value of [x + 4]
solution : we know, [x + k] = [x] + k, for any integer k.
so, [x + 1] = [x] + 1
now, 2[x] + 1 = 3([x] + 1) - 8
⇒2[x] + 1 = 3[x] + 3 - 8
⇒1 + 5 = [x]
⇒6 = [x]
so, 6 ≤ x < 7
now [x + 4] = [x] + 4 = 6 + 4 = 10
Therefore the value of [x + 4] = 10
also read similar questions : Different symbols of greatest integer function
https://brainly.in/question/1306622
how to integrate a greatest integer function
https://brainly.in/question/997387
Sum of values of x satisfying maximum {ex, e–x} = 8 is , then equals (where [·] represents the greatest integer function...
https://brainly.in/question/18134790
GivEn :-
2 [x] +1 = 3 [x+1]-8
Where [-] Represent the Greatest Integer Function
To FinD :-
- The Value of [x+4]
SoluTioN :-
We know that,
- [x+k] = [x]+k, for any Integer k
By this,
- [x+1] = [x]+1
Now :-
- 2[x] +1 = 3[x]+1 -8
- 2[x] +1 = 3[x]+3-8
- 2[x]+1 = 3[x] +3-8
- 1 + 5 = [x]
- [x] = 6
Since, [x] = 6 ≤ x < 7
Now, [x+4] = [x] + 4 = 6+4 = 10