Math, asked by Rushik143, 8 days ago

If 2^x+1=3^x-1then find the value of x. (By using logs)​

Answers

Answered by jitendra12iitg
0

Answer:

The answer is x=\dfrac{\log 3+\log 2}{\log 3-\log 2}

Step-by-step explanation:

Given equation is

              2^{x+1}=3^{x-1}

Take common log both sides

           \Rightarrow \log 2^{x+1}=\log 3^{x-1}

Using power rule (\log a^n=n\log a) of logarithm

          \Rightarrow (x+1)\log 2=(x-1)\log 3\\\Rightarrow x\log 2-x\log 3=-\log 3-\log 2\\\Rightarrow x(\log 2-\log 3)=-(\log 3+\log 2)\\\\\Rightarrow x=\dfrac{-(\log 3+\log 2)}{\log 2-\log 3}=\dfrac{\log 3+\log 2}{\log 3-\log 2}

Similar questions