Math, asked by Piyupd878, 8 months ago

If 2^x+3 + 2^x – 4 =129, then find the value of x.

Answers

Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

 \sf{ Solve \:  for \:  x  \: when \:  \:  \: {2}^{(x + 3)}  +  {2}^{(x - 4)}  = 129  \: }

CALCULATION

 \sf{ {2}^{(x + 3)}  +  {2}^{(x - 4)}  = 129  }

\displaystyle \implies \:  \sf{( {2}^{x}  \times  {2}^{3} ) +  \frac{{2}^{x}}{ {2}^{4} }    = 129  } \:  \: ....(1)

 \sf{ Let  \:  \: y =  {2}^{x}  \: } \:  \:

Then Equation ( 1 ) becomes

 \displaystyle \:  \sf{8y +   \frac{y}{16}    = 129  }

  \implies \: \displaystyle \:  \sf{  \frac{128y + y}{16}    = 129  }

  \implies \: \displaystyle \:  \sf{  \frac{129y }{16}    = 129  }

  \implies \: \displaystyle \:  \sf{ y =129 \times   \frac{16}{129}      }

  \implies \: \displaystyle \:  \sf{ y =16      }

  \implies \: \displaystyle \:  \sf{  {2}^{x}  =16      }

  \implies \: \displaystyle \:  \sf{  {2}^{x}  = {2}^{4}       }

  \implies \: \displaystyle \:  \sf{  x = 4 }

RESULT

 \boxed{ \sf{  \: \:x = 4 \:   \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Answered by mantu9000
1

We have:

2^{x+3} +2^{x-4} =129

We have to find, the value of x in the given expression.

Solution:

2^{x+3} +2^{x-4} =129

2^{x}2^{3}  +\dfrac{2^{x}}{2^{4}}  =129

2^{x}(8  +\dfrac{1}{16} )=129

2^{x}(\dfrac{128+1}{16} )=129

2^{x}(\dfrac{129}{16} )=129

2^{x}=16

2^{x}=2^4

Comparing both sides the powers, we get

x = 4

Thus, the value of x is the given expression is "equal to 4".

Similar questions