Math, asked by mohit0082006, 1 year ago

if 2^x=3^y=12^z, then show that 1/z=1/y+2/x​

Answers

Answered by Anonymous
7

GIVEN:-

  • if \rm{2^x=3^y=12^z}

TO SHOW

  • \rm{\dfrac{1}{z}=\dfrac{1}{y}+\dfrac{2}{x}}.

Now,

\implies\rm{2^x=3^y=12^z= k}

\implies\rm{2^x=k}

\implies\rm{2=k^\frac{1}{x}}

\implies\rm{3^y=k}

\implies\rm{3=k^\frac{1}{k}}

\implies\rm{12^z=k}

\implies\rm{12=k^\frac{1}{z}}.

Now,

As we know,

\implies\tt{12=2^2\times{3}}

\implies\tt{k^{\dfrac{1}{z}}=(k^{\dfrac{1}{x}})^2\times{k^\dfrac{1}{z}}

\implies\tt{k^\frac{2}{x}+^\frac{1}{y}=k^\frac{1}{z}}.

Bases are same and equating the Powers

\implies\mathcal{\dfrac{2}{x}+\dfrac{1}{x}=\dfrac{1}{z}}.

Hence, Proved.

Similar questions