Math, asked by neelvikrampranavboll, 10 days ago

If 2/x+3/y=13 and 5/x-4/y = -2, then x + y equals (a)⅙ (b)-1/6 (c)⅚ (d)-5/6​

Answers

Answered by BrainlyTwinklingstar
9

Answer

\sf \dashrightarrow \dfrac{2}{x} + \dfrac{3}{y} = 13 \: \: --- (i)

\sf \dashrightarrow \dfrac{5}{x} - \dfrac{4}{y} = -2 \: \: --- (ii)

Let \sf \dfrac{1}{x} be u.

Let \sf \dfrac{1}{y} be v.

So, the equations become

\sf \dashrightarrow 2u + 3v = 13

\sf \dashrightarrow 5u - 4v = -2

By first equation,

\sf \dashrightarrow 2u + 3v = 13

\sf \dashrightarrow 2u = 13 - 3v

\sf \dashrightarrow u = \dfrac{13 - 3v}{2}

Now, let's find the value of v by second equation.

\sf \dashrightarrow 5u - 4v = -2

\sf \dashrightarrow 5 \bigg( \dfrac{13 - 3v}{2} \bigg) - 4v = -2

\sf \dashrightarrow \dfrac{65 - 15v}{2} - 4v = -2

\sf \dashrightarrow \dfrac{65 - 15v - 8v}{2} = -2

\sf \dashrightarrow \dfrac{65 - 23v}{2} = -2

\sf \dashrightarrow 65 - 23v = -2 \times 2

\sf \dashrightarrow 65 - 23v = -4

\sf \dashrightarrow -23v = -4 - 65

\sf \dashrightarrow -23v = -69

\sf \dashrightarrow v = \dfrac{-69}{-23}

\sf \dashrightarrow v = 3

Now, let's find the value of u by first equation.

\sf \dashrightarrow 2u + 3v = 13

\sf \dashrightarrow 2u + 3(3) = 13

\sf \dashrightarrow 2u + 9 = 13

\sf \dashrightarrow 2u = 13 - 9

\sf \dashrightarrow 2u = 4

\sf \dashrightarrow u = \dfrac{4}{2}

\sf \dashrightarrow u = 2

We know that,

\sf \dashrightarrow \dfrac{1}{x} = u

\sf \dashrightarrow \dfrac{1}{x} = 2

\sf \dashrightarrow 2x = 1

\sf \dashrightarrow x = \dfrac{1}{2}

We also know that,

\sf \dashrightarrow \dfrac{1}{y} = v

\sf \dashrightarrow \dfrac{1}{y} = 3

\sf \dashrightarrow 3y = 1

\sf \dashrightarrow y = \dfrac{1}{3}

Now, let's find the answer if this question.

\sf \dashrightarrow x + y

\sf \dashrightarrow \dfrac{1}{2} + \dfrac{1}{3}

\sf \dashrightarrow \dfrac{3 + 2}{6}

\sf \dashrightarrow \dfrac{5}{6}

Hence, the values of x+y is 5/6.

Similar questions