Math, asked by simmi328, 1 year ago

if 2^x=3^y=6^z.prove that 1/x+1/y-1/z=0​


Anonymous: Mark my Ans as brainlist if it helps you!-)

Answers

Answered by saurav6517
1

Answer:

O

Step-by-step explanation:

Let 2^x=3^y=6^z=k

2^x=k

K^1/x=2

Similarly

k=3^y

K^1/y=3

Again

K=6^z

K^1/z=6=2*3

K^1/z=K^1/x*K^1/y

Equating base

1/z=1/x+1/y

1/x+1/y-1/z=0

Answered by Anonymous
3

Answer \:  \\ 2 {}^{x}  = 3 {}^{y}  = 6 {}^{z}  \\  \\ let \:  \:  \:  \: 2 {}^{x}   = 3 {}^{y}  = 6 {}^{z}  = k \\  \\ 2 {}^{x}  = k \:  \:  \:  \:  \: 3 {}^{y}  = k \:  \:  \:  \:  \: and \:  \:  \:  \: 6 {}^{z}  = k \\  \\ 2 = k {}^{ \frac{1}{x} }  \:  \:  \:  ...Equation \:  \: i \: \:  \: \\  \\  3 = k {}^{ \frac{1}{y} }  \:  \:  \: ...Equation \:  \: ii \: \\  \\ 6 = k {}^{ \frac{1}{z} }  \:  \:  \: ...Equation \: iii \\  \\ 6 = k {}^{ \frac{1}{z} }  \\  \\ 3 \times 2 = k {}^{ \frac{1}{z} }  \\  \\ k {}^{ \frac{1}{x} }  \times k {}^{ \frac{1}{y} }  = k {}^{ \frac{1}{z} }  \\  \\ k {}^{( \frac{1}{x}  +  \frac{1}{y})}  = k {}^{ \frac{1}{z} }  \\  \\ Now \:  \: compare \: powers \: of \: k \\  \\  \frac{1}{x}  +  \frac{1}{y}  =   \frac{1}{z}   \\  \\  \frac{1}{x}  +  \frac{1}{y}  -  \frac{1}{z}  = 0 \:  \:  \:  \:  \:  \: Hence \:  \: proved \: :  \:  \:


saurav6517: how you write in this way
Similar questions