if 2^x=3^y=6^-z then find 1/x +1/y+1/z
Answers
Answered by
3
Answér :
1/x + 1/y + 1/z = 0
Solution :
- Given : 2^x = 3^y = 6^(-z)
- To find : 1/x + 1/y + 1/z = ?
Let , 2^x = 3^y = 6^(-z) = k
• If 2^x = k
then 2 = k^(1/x)
• If 2^y = k
then 3 = k^(1/y)
• If 6^(-z) = k
then 6 = k^(1/-z)
=> 6 = k^(-1/z)
=> 2 × 3 = k^(-1/z)
=> k^(1/x) × k^(1/y) = k^(-1/z)
=> k^(1/x + 1/y) = k^(-1/z)
=> 1/x + 1/y = -1/z
=> 1/x + 1/y + 1/z = 0
Hence ,
1/x + 1/y + 1/z = 0
Answered by
0
Thus 1/z will be equal to - log 6 to base k. Given 2^x=3^y=6^-z. Thus 1/z will be equal to - log 6 to base k.
Similar questions