Math, asked by mohit10167, 1 year ago

If 2^x=3^y=6^z .then find 1/x+1/y+1/z
if \:  {2}^{x}  =  {3}^{y}  =  {6}^{z} .then \: find \:  \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}

Answers

Answered by ihrishi
1

Step-by-step explanation:

In order to find the required result, given question requires an improvement.

{2}^{x} = {3}^{y} =\huge{ {6}^{z}}

should be expressed as:

 {2}^{x} = {3}^{y} =\huge{ {6}^{-z}}

If it is so, then let us find:

Given: \:  {2}^{x}  =  {3}^{y}  =  {6}^{ - z}  \\ Let \: {2}^{x}  =  {3}^{y}  =  {6}^{ - z} = k \\  \implies  \: {2}^{x}  =k\implies 2 = k^{ \frac{1}{x} } \\  \implies  \: {3}^{y}  =k\implies 3= k^{ \frac{1}{y} } \\  \implies  \: {6}^{ - z}  =k\implies 6= k^{  - \frac{1}{z} }  \\ now \\ \because \:  \:  2 \times 3 = 6 \\  \therefore \:  k^{ \frac{1}{x} } \times  k^{ \frac{1}{y} } =  k^{  - \frac{1}{z} } \\  \implies \: k^{ \frac{1}{x}  + \frac{1}{y}}=  k^{ -  \frac{1}{z} } \\ \implies \:   \frac{1}{x}  + \frac{1}{y} =  -  \frac{1}{z}  \\  \implies \:   \frac{1}{x}  + \frac{1}{y}  + \frac{1}{z}   = 0

Answered by ihrishi
0

Step-by-step explanation:

In order to find the required result, given question requires an improvement.

{2}^{x} = {3}^{y} =\huge{ {6}^{z}}

should be expressed as:

 {2}^{x} = {3}^{y} =\huge{ {6}^{-z}}

If it is so, then let us find:

Given: \:  {2}^{x}  =  {3}^{y}  =  {6}^{ - z}  \\ Let \: {2}^{x}  =  {3}^{y}  =  {6}^{ - z} = k \\  \implies  \: {2}^{x}  =k\implies 2 = k^{ \frac{1}{x} } \\  \implies  \: {3}^{y}  =k\implies 3= k^{ \frac{1}{y} } \\  \implies  \: {6}^{ - z}  =k\implies 6= k^{  - \frac{1}{z} }  \\ now \\ \because \:  \:  2 \times 3 = 6 \\  \therefore \:  k^{ \frac{1}{x} } \times  k^{ \frac{1}{y} } =  k^{  - \frac{1}{z} } \\  \implies \: k^{ \frac{1}{x}  + \frac{1}{y}}=  k^{ -  \frac{1}{z} } \\ \implies \:   \frac{1}{x}  + \frac{1}{y} =  -  \frac{1}{z}  \\  \implies \:   \frac{1}{x}  + \frac{1}{y}  + \frac{1}{z}   = 0

Answered by ihrishi
0

Step-by-step explanation:

In order to find the required result, given question requires an improvement.

{2}^{x} = {3}^{y} =\huge{ {6}^{z}}

should be expressed as:

 {2}^{x} = {3}^{y} =\huge{ {6}^{-z}}

If it is so, then let us find:

Given: \:  {2}^{x}  =  {3}^{y}  =  {6}^{ - z}  \\ Let \: {2}^{x}  =  {3}^{y}  =  {6}^{ - z} = k \\  \implies  \: {2}^{x}  =k\implies 2 = k^{ \frac{1}{x} } \\  \implies  \: {3}^{y}  =k\implies 3= k^{ \frac{1}{y} } \\  \implies  \: {6}^{ - z}  =k\implies 6= k^{  - \frac{1}{z} }  \\ now \\ \because \:  \:  2 \times 3 = 6 \\  \therefore \:  k^{ \frac{1}{x} } \times  k^{ \frac{1}{y} } =  k^{  - \frac{1}{z} } \\  \implies \: k^{ \frac{1}{x}  + \frac{1}{y}}=  k^{ -  \frac{1}{z} } \\ \implies \:   \frac{1}{x}  + \frac{1}{y} =  -  \frac{1}{z}  \\  \implies \:   \frac{1}{x}  + \frac{1}{y}  + \frac{1}{z}   = 0

Similar questions