Math, asked by yashanakhare, 1 year ago

if 2^x = 5^y = 40^y, then prove that 1/z = 3/x + 1/y​


Anonymous: kindly Mark my Ans as brainlist if it helps you!!))
yashanakhare: srry but i m new here idk how to do so
Anonymous: At The top of my Ans.. there is an option of Mark this Ans as brainlist Just click there..
yashanakhare: there was a option to report it
yashanakhare: sorry but it will take time to me to understand that
yashanakhare: sorrbut thanks
yashanakhare: sorry but*
Anonymous: it's okay:)
yashanakhare: done brainlist
Anonymous: yeah:)

Answers

Answered by Anonymous
5

HEYA \\  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \\  \\ 2 {}^{x}  = 5 {}^{y}  = 40 {}^{z}  \\  \\ let \:  \:  \: 2 {}^{x}  = 5 {}^{y}  = 40 {}^{z}  = k \\  \\ 2 {}^{x}  = k \:  \: \:  \:   \: 5 {}^{y}  = k \:  \:  \:  \: 40 {}^{z}  = k \\  \\ 2 = k {}^{ \frac{1}{x} }  \:  \:  \: .... \: Equation \:  \: i \\ \\  5 = k {}^{ \frac{1}{y} }  \:  \:  \: ... \:  \: Equation \:  \:  \: ii \\  \\ 40 = k {}^{ \frac{1}{z} }  \:  \:  \: .... \:  \: Equation \:  \:  \: iii \\  \\  \\ 40 = k {}^{ \frac{1}{z} }  \\  \\ 5 \times 2 {}^{3}  = k {}^{ \frac{1}{z} }  \\  \\ k {}^{ \frac{1}{y} }  \times k {}^{ \frac{1}{3x} }  = k {}^{ \frac{1}{z} }  \:  \:  \:  \: by \:  using \: Equation \: i \: and \: ii \\  \\ k {}^{ (\frac{1}{y} +  \frac{1}{3x} ) }  = k {}^{ \frac{1}{z} }  \\  \\ now \: compare \: powers \: of \: k \: we \: have \\  \\  \frac{1}{y}  +  \frac{1}{3x}  =  \frac{1}{z}  \:  \: \:  \: hence \:  \: proved

Similar questions