If 2^x=6^y=(18)^2, then prove that 2/y=1/x+1/z
Answers
Answered by
2
Step-by-step explanation:
2^x=6^y=(18)^z= k (say)
2^x=k
2=k^1/x............eq1
6^y=k
6=k^1/y
squiring both sides
36=k^2/y.......eq2
18^z=k
18=k^1/z....eq3
multiplying eq1 and eq3
2×18=k^1/x . k^1/z
36=k^(1/x+1/z)
k^2/y=k^(1/x+1/z) (putting the value from eq2)
2/y= 1/x+1/z proved. ( we know that if a^m=a^n then m=n)
mark me brainliest
I hope that it will help you
Similar questions