if 2(x-y)²=16 and xy=24, find the value of x²+y²
Answers
Answered by
3
ANSWER:
- Value of x²+y² = 56.
GIVEN:
- 2(x-y)²=16
- xy = 24 ....(i)
TO FIND:
- Value of x²+y².
SOLUTION:
=> 2(x-y)² = 16
=> (x-y)² = 16/2
=> (x-y)² = 8
=> x²+y²-2xy = 8
Putting xy = 24 from (i)
=> x²+y²-2(24) = 8
=> x²+y²-48 = 8
=> x²+y² = 8+48
=> x²+y² = 56.
NOTE:
Some important formulas:
(a+b)² = a²+b²+2ab
(a-b)² = a²+b²-2ab
(a+b)(a-b) = a²-b²
(a+b)³ = a³+b³+3ab(a+b)
(a-b)³ = a³-b³-3ab(a-b)
a³+b³ = (a+b)(a²+b²-ab)
a³-b³ = (a-b)(a²+b²+ab)
(a+b)² = (a-b)²+4ab
(a-b)² = (a+b)²-4ab
Answered by
1
Step-by-step explanation:
2 =16
2( + -2xy) =16
( + -2xy) = 16/2 = 8
( +) = 8 +2xy
= 8 +2(24)
= 8 + 48
( +) = 56
plz mark as brainiest
Similar questions