Math, asked by kashyapaditi, 3 months ago

if
20 Pr
= 6840 findr.​

Answers

Answered by mathdude500
3

Correct Statement is

 \bf \: If  \: \:^{20} P_r \:  =  \: 6840 \: then \: find \: value \: of \: r.

\large\underline\purple \bf{ \bf \: Solution :-  }

We know that,

  • A permutation is the choice of r things from a set of n things without replacement and where the order matters.

\rm :\implies\:\boxed{\tt\:^{n}P_r=\dfrac{n!}{(n-r)!}}

So,

  • Given that

\rm :\longmapsto\:\:^{20} P_r \:  =  \: 6840

\rm :\longmapsto\:\dfrac{20!}{(20 - r)!}  = 6840

\rm :\longmapsto\:\dfrac{ \cancel{20 \times 19 \times 18} \times 17!}{(20 - r)!}  =  \cancel{20 \times 19 \times 18}

\rm :\longmapsto\:\dfrac{17!}{(20 - r)!}  = 1

\rm :\longmapsto\:17! = (20 - r)!

\rm :\implies\:17 = 20 - r

\rm :\implies\: \boxed{ \bf \: r \:  =  \: 3}

Additional Information :-

Permutation :-

  • A permutation is the choice of r things from a set of n things without replacement and where the order matters.

\rm :\longmapsto\:\boxed{\bf\:^{n}P_r=\dfrac{n!}{(n-r)!}}

Combination :-

  • A combination is the choice of r things from a set of n things without replacement and where order does not matter.

\rm :\longmapsto\:\boxed{\bf \:^n C_r=\dfrac{n!}{r! \: (n-r)!}}

Similar questions