if 2019^x+2019^-x=3 then find the value of √2019^6x-2019^-x÷2019^x-2019^-x find related solutions
Answers
Given : 2019^x+2019^-x=3
To Find : value of √2019^6x-2019^-x÷2019^x-2019^-x
Solution:
2019^x+2019^-x=3
Let say 2019^x = a
=> 2019^-x = 1/a
a + 1/a = 3
=> a² + 1 = 3a
(√2019^6x-2019^-x)÷ (2019^x-2019^-x)
= (2019^3x - 2019^-x)÷ (2019^x-2019^-x)
= ( a³ - 1/a) ÷ (a -1/a)
multiplying numerator and denominator by a
= ( a⁴ - 1) ÷ (a² - 1)
= (a² + 1)(a² - 1) ÷ (a² - 1)
= a² + 1
= 3a
a² + 1 = 3a
=> a² - 3a + 1 = 0
=> a = (3 ± √9-4)/2
=> a = (3 ± √5)/2
√2019^6x-2019^-x÷2019^x-2019^-x = 3 (3 ± √5)/2
Learn More:
The table shows a pattern of exponents. Powers of 5 Value 5 cubed ...
https://brainly.in/question/17238360
Express-1/100000 and 196/256 in exponential form - Brainly.in
https://brainly.in/question/17595179
Answer:
Answer:12
Answer:12Step-by-step explanation:
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-x
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-xSolution:
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-xSolution:2019^x+2019^-x=3
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-xSolution:2019^x+2019^-x=3Let say 2019^x = a => 2019^-x = 1/a
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-xSolution:2019^x+2019^-x=3Let say 2019^x = a => 2019^-x = 1/aa + 1/a = 3
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-xSolution:2019^x+2019^-x=3Let say 2019^x = a => 2019^-x = 1/aa + 1/a = 3=> a² + 1 = 3a
Answer:12Step-by-step explanation:Given: 2019^x+2019^-x=3To Find : value of√2019 6x-2019^-x÷2019^x-2019^-xSolution:2019^x+2019^-x=3Let say 2019^x = a => 2019^-x = 1/aa + 1/a = 3=> a² + 1 = 3a(√2019^6x-2019^-x) (2019^x-2019^-x)
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1= 3a
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1= 3aa²+1=3a
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1= 3aa²+1=3a=> a²-3a + 1 = 0 => a =(3+√9-4)/2 => a = (3 ± √5)/2
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1= 3aa²+1=3a=> a²-3a + 1 = 0 => a =(3+√9-4)/2 => a = (3 ± √5)/2therefore on solving it
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1= 3aa²+1=3a=> a²-3a + 1 = 0 => a =(3+√9-4)/2 => a = (3 ± √5)/2therefore on solving it√2019^6x-2019^-x÷2019^x-2019^-x = 3 (3 ±
= (2019^3x - 2019^-x) (2019^x-2019^-x) =(a³-1/a) (a -1/a) multiplying numerator and denominator by a = (a¹ - 1) = (a² - 1) = (a² + 1)(a²-1) = (a² - 1)= a² + 1= 3aa²+1=3a=> a²-3a + 1 = 0 => a =(3+√9-4)/2 => a = (3 ± √5)/2therefore on solving it√2019^6x-2019^-x÷2019^x-2019^-x = 3 (3 ±√5)/2 =12