Math, asked by kalpanajaiswal489, 8 months ago

If 23x + 27y = 73 and 27x + 23y = 77. Then find x and y.

Answers

Answered by Anonymous
3

x = 2 and y = 1

Step-by-step explanation:

We have,

27x + 31y = 85

31x + 27y = 89

(1)

To find, the values of x and y=

By substitution method,

From (1),

27x + 31y 85

- 27x = 85 - 31y

85 - 31y

27

Put x = 85 – 31y

.

(A)

27 in (2), we get 85 31y

31(

27

+ 27y = 89

2635961 y + 729y 27 = 89

- 2635 232y = 89 x 27 = 2403

-232y = 24032635 = -232 - y = 1

Put y = 1 in (A), we get

85 – 31 54

27

27

- X = 2

please like

Answered by aara2031
18

Answer:

x = 2 and y = 1

Step-by-step explanation:

We have,

27x + 31y = 85              ......(1)

31x + 27y = 89             ......(2)

To find, the values of x and y=

By substitution method,

From (1),

27x + 31y = 85

⇒ 27x = 85 - 31y

⇒ x=\dfrac{85-31y}{27}x=2785−31y    ..... (A)

Put x=\dfrac{85-31y}{27}x=2785−31y in (2), we get

31(\dfrac{85-31y}{27})+27y=8931(2785−31y)+27y=89

⇒\dfrac{2635-961y+729y}{27}=89272635−961y+729y=89

⇒ 2635-232y=89\times 27=24032635−232y=89×27=2403

⇒-232y=2403-2635=-232−232y=2403−2635=−232

⇒ y = 1

Put y = 1 in (A), we get

x=\dfrac{85-31}{27}=\dfrac{54}{27}x=2785−31=2754

⇒ x = 2

Similar questions