Math, asked by RITIKKUMAR1640, 2 months ago

if 25^20x=40804 and 64√y=5^18 then(54x-1)5

Answers

Answered by piyushgamer35
13

Answer:

260 is correct answer

Step-by-step explanation:

(54x-1)5

(270x-5)

=260

is solution

Answered by brokendreams
2

If 25^{20x}=40804 and 64\sqrt{y} =5^{18} then\frac{ (54x-1)5}{4^{-\sqrt{y} } }is 1100

Step-by-step explanation:

Given: 25^{20x}=40804 and 64\sqrt{y} =5^{18}

To find: The value for \frac{  (5^{4x-1})^{5} }{4^{-\sqrt{y} } }

Formula used:

1) a^{m} .a^{n} =a^{m+n}

2) \frac{a^{m} }{a^{n} } =a^{m-2}

3) (a^{m} )^{n} =a^{mn}

Solution:

Given, \frac{  (5^{4x-1})^{5} }{4^{-\sqrt{y} } }

According to the given equation, we can use the third formula mentioned above.

(5^{4x-1})^{5}= 5^{20x-5}

= > 5^{20x}(5^{-5})

Multiply and divide with 2

= > 5^{2*20*\frac{1}{2} } (5^{-5})

= > 25^{20x*\frac{1}{2} } (5^{-5})

Given equation 25^{20x}=40804

Apply it,

= > \sqrt{40804} .5^{-5}   (Power \frac{1}{2} become square root here)

The value for \sqrt{40804} is 220.

= > 220(5^{-5})

Now 220 can be written as 44*5

= > 44*5( 5^{-5})

= > 44(5^{-4})

Now, to find 4^{-\sqrt{y}

= > 4^{3\sqrt{y}*\frac{-1}{3}  }

= > 64\sqrt{y} *\frac{-1}{3}

= > 5^{18} *\frac{-1}{3}

= > 5^{-6}

Now apply the values that were found out above in the given equation

\frac{ (54x-1)5}{4^{-\sqrt{y} } }=\frac{ 44(5^{-4})}{5^{-6}}

= > 44(5^{-4+6} )

= > 44(5^{2})

= > 44*25

= > 1100

Hence, If 25^{20x}=40804 and 64\sqrt{y} =5^{18} then \frac{ (54x-1)5}{4^{-\sqrt{y} } } is 1100

Similar questions