Math, asked by BajRangDal1919, 4 months ago

If (25ᵃ) (5)ᵃ⁺⁴ (125)²ᵃ = (625)¹⁰
Find a?

Answers

Answered by CopyThat
11

Given

  • (25ᵃ) (5)ᵃ⁺⁴ (125)²ᵃ = (625)¹⁰

To find

  • Value of a

Solution

  • (25ᵃ) (5)ᵃ⁺⁴ (125)²ᵃ = (625)¹⁰
  • (5²)ᵃ (5)ᵃ⁺⁴ (5³)²ᵃ = (5⁴)¹⁰
  • 5²ᵃ × 5ᵃ⁺⁴ × 5⁶ᵃ = 5⁴⁰

Bases are same, add the power

  • 5²ᵃ⁺ᵃ⁺⁴⁺⁶ᵃ = 5⁴⁰
  • 5⁹ᵃ⁺⁴ = 5⁴⁰

Bases are equal, equate the power

  • 9a+4 = 40
  • 9a = 40-4
  • 9a = 36
  • a = ³⁶⁄₉
  • a = 4

Value of a = 4

Answered by mathdude500
3

Given : -

\tt \:   {(25)}^{a}  {(5)}^{a + 4}  {(125)}^{2a}  =  {(625)}^{10}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{value \: of \: a}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{a^m \:  =  \: {a^n}\: \implies\:{m\: = \:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  \longrightarrow \:  {(25)}^{a}  {(5)}^{a + 4}  {(125)}^{2a}  =  {(625)}^{10}

\tt \:  \longrightarrow \:  {( 5\times 5)}^{a}  {(5)}^{a + 4}  {(5 \times 5 \times 5)}^{2a}  =  {(5 \times 5 \times 5 \times 5)}^{10}

\tt \:  \longrightarrow \:  {(5)}^{2a}  {(5)}^{a + 4}  {(5)}^{6a}  =  {(5)}^{40}

\tt \:  \longrightarrow \:  {(5)}^{2a + a + 4 + 6a}  =  {(5)}^{40}

\tt \:  \longrightarrow \:  {(5)}^{9a + 4}  =  {5}^{40}

\tt\implies \:9a + 4 = 40

\tt \:  \longrightarrow \: 9a = 40 - 4

\tt \:  \longrightarrow \: 9a = 36

\tt\implies \:a \:  =  \: 4

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, value \: of \: a \:  =  \: 4}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions