Math, asked by itsSakshamtq, 4 months ago

If (25ᵃ) (5)ᵃ⁺⁴ (125)²ᵃ = (625)¹⁰
Find a?

Answers

Answered by usernametaken8
1

Step-by-step explanation:

5²ᵃ × 5ᵃ⁺⁴ × 5⁶ᵃ= 5⁴⁰

5⁹ᵃ⁺+⁴ = 5⁴⁰

9a+4 = 40

9a = 36

a= 4

Answered by Anonymous
38

⭐ Question :-

\sf If\:(25^a)(5)^{a+4}(125)^{2a}=(625)^{10},  \\ \sf find \: the \: value \: of \: a.

 \\

⭐ Solution :-

\sf 25^a can be written as \sf (5)^{2a}

\sf (125)^{2a} can be written as \sf (5)^{6a}

\sf (625)^{10} can be written as \sf (5)^{40}

So, the law of exponents 1 : \sf x^mx^n=x^{m+n}

\mapsto \sf 5^{2a}\:5^{a+4}\:5^{6a}=5^{40}

\mapsto \sf 2a+a+4+6a=40

\mapsto \sf 9a+4=40

\mapsto \sf 9a=40-4

\mapsto \sf a= \frac{\cancel{36}}{\cancel9}

\mapsto \sf a=4

⭐Therefore, a = 4.

 \\

_________________________________

All done :)

Similar questions