if 25^n-1+100=5^2n-1 , then find the value of n
Answers
Answered by
0
Step-by-step explanation:
25^n−1+100=5^2n−1
⟹5^2n−2+100=5^2n−1
⟹5^2n−15+100=5^2n−1
Let, 5^2n−1=t
∴5t+100=t
⟹4t=100
⟹t=25
So, we get —
5^2n−1=53
⟹2n−1=3
⟹2n=4
∴n=2
Similar questions