If 25 sin Q= 7 , find 2tanQ/1+tan^2Q
Answers
EXPLANATION.
⇒ 25 sin(Q) = 7.
As we know that,
sinθ = Perpendicular/Hypotenuse.
⇒ sin(Q) = 7/25 = P/H.
By using Pythagoras Theorem, we get.
⇒ H² = P² + B².
Hypotenuse > Perpendicular > Base.
Using this formula in the equation, we get.
⇒ (25)² = (7)² + B².
⇒ 625 = 49 + B².
⇒ 625 - 49 = B².
⇒ 576 = B².
⇒ B = √576.
⇒ B = 24.
tanθ = Perpendicular/Base = 7/24.
To find :
⇒ 2tan(Q)/1 + tan²(Q).
⇒ [2 x (7/24)/1 + (7/24)²].
⇒ [(14/24)/1 + 49/576].
⇒ [(14/24)/576 + 49/576].
⇒ [(14/24)/625/576].
⇒ [14/24 x 576/625].
⇒ 336/625.
⇒ 2tan(Q)/1 + tan²(Q) = 336/625.
Question
If 25 sin Q= 7 , find 2tanQ/1+tan^2Q
Answer
➽ sec∅ = 25/7 = H/B
➽ H²=P²+B²
➽ (25)²= P²+(7)²
➽625 = P²+(49)
➽ 576 = P²
➽P = 24 cm
Tan ∅ = P/B = 27/7
To find
➽ 2 tan (Q)/1+tan²(Q)
[2×(7×24)/1+(7×24)²]
[(14/24)/1+49/576]
[(14/24)/576+49/576]
[(14/24)/625/576]
[(14/24×576/625]