Math, asked by pradeeppaswan677, 9 months ago

If 25th term of an AP is 245 and sum of first 10 term is 500 Find the value of its 100th term ​

Answers

Answered by atahrv
7

Answer :

\large{\boxed{\star\:\:a_{100}\:=\:995\:\:\star}}

Explanation :

Given :–

  • a₂₅ = 245
  • S₁₀ = 500

To Find :–

  • a₁₀₀ (100th term of this A.P.)

Formulae Applied :–

  • \boxed{\bf{\star\:\:a_n\:=\:a\:+\:(n\:-\:1)d\:\:\star}}

  • \boxed{\bf{\star\:\:S_n\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d] \:\:\star}}

Solution :–

We have,

\rightarrow\sf{a_{25}\:=\:245}

\rightarrow\sf{a_{25}\:=\:a\:+\:(25\:-\:1)d}

\rightarrow\sf{245\:=\:a\:+\:24d\:\:-----\bf{(1)}}

Multiplying both sides by 2 :-

\rightarrow\sf{2(245\:=\:a\:+\:24d)}

\rightarrow\sf{490\:=\:2a\:+\:48d\:\:-----\bf{(2)}}

We also have ,

\rightarrow\sf{S_{10}\:=\:500}

\rightarrow\sf{S_{10}\:=\:\dfrac{10}{2}\:[2a\:+\:(10\:-\:1)d] }

\rightarrow\sf{500\:=\:5\:\times\:(2a\:+\:9d) }

\rightarrow\sf{2a\:+\:9d\:=\:\dfrac{500}{5}  }

\rightarrow\sf{2a\:+\:9d\:=\:100\:\:-----\bf{(3)}  }

Subtracting Equation(2) from Equation(3) :-

\rightarrow\sf{2a+48d\:-\:(2a\:+\:9d)\:=\:490-\:100  }

\rightarrow\sf{2a+48d\:-\:2a\:-\:9d\:=\:390  }

\rightarrow\sf{39d\:=\:390  }

\rightarrow\sf{d\:=\:\dfrac{390}{39}   }

\rightarrow\bf{d\:=\:10  }

Putting this value of 'd' in Equation(1) :-

\rightarrow\sf{245\:=\:a\:+\:24(10)}

\rightarrow\sf{245\:=\:a\:+\:240}

\rightarrow\sf{a\:=\:245\:-\:240}

\rightarrow\bf{a\:=\:5}

Now , we have a = 5 , d = 10 and n = 100 .

Putting these values in the Formula :

\rightarrow\sf{a_{n}\:=\:a\:+\:(n\:-\:1)d}

\rightarrow\sf{a_{100}\:=\:5\:+\:(100\:-\:1)(10)}

\rightarrow\sf{a_{100}\:=\:5\:+\:(99)(10)}

\rightarrow\sf{a_{100}\:=\:5\:+\:990}

\rightarrow\boxed{\bf{a_{100}\:=\:995}}

∴ The 100th Term of this A.P. is 995 .

Similar questions