Math, asked by anupojuharika53, 6 months ago

if 270°→theta→360 and costheta =1/4 find tan theta/2

Answers

Answered by RvChaudharY50
6

Given :- if 270° < A < 360° and cosA = (1/4) . find tan(A/2) = ?

Solution :-

we know that,

  • cos2A = (1 - tan²A)/(1 + tan²A)

So,

  • cosA = {1 - tan²(A/2)} / {1 + tan²(A/2)}

Putting value we get,

→ (1/4) = {1 - tan²(A/2)} / {1 + tan²(A/2)}

Let tan(A/2),

→ (1/4) = {1 - x²} / {1 + x²}

→ 1 + x² = 4(1 - x²)

→ 1 + x² = 4 - 4x²

→ 4x² + x² + 1 - 4 = 0

→ 5x² - 3 = 0

→ 5x² = 3

→ x² = 3/5

→ x = ±√(3/5)

therefore,

→ tan(A/2) = ±√(3/5)

Now, since 270° < A < 360° .

  • A = in 4th quadrant .
  • in 4th quadrant cosA is positive .

Hence,

→ tan(A/2) = (-√(3/5) (Ans.)

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Answered by pulakmath007
22

SOLUTION :-

GIVEN :-

 \displaystyle \sf{  {270}^{ \circ}  &lt;  \theta &lt;  {360}^{ \circ} \: \:  \: and \:  \cos \theta =  \frac{1}{4}  }

TO DETERMINE :-

 \displaystyle \sf{  \tan \frac{ \theta}{2} }

FORMULA TO BE IMPLEMENTED :-

We are aware of the Trigonometric identity that

 \displaystyle \sf{  {\tan}^{2}  \frac{ \theta}{2}  =  \frac{1 -  \cos \theta}{1  +   \cos \theta} }

EVALUATION :-

Here it is given that

 \displaystyle \sf{  {270}^{ \circ}  &lt;  \theta &lt;  {360}^{ \circ} \: \:  \: and \:  \cos \theta =  \frac{1}{4}  }

Now

 \displaystyle \sf{  {\tan}^{2}  \frac{ \theta}{2}  =  \frac{1 -  \cos \theta}{1  +   \cos \theta} }

 \implies \displaystyle \sf{  {\tan}^{2}  \frac{ \theta}{2}  =  \frac{1 -  \frac{1}{4} }{1  +   \frac{1}{4} } }

 \implies \displaystyle \sf{  {\tan}^{2}  \frac{ \theta}{2}  =  \frac{ \frac{4 - 1}{4} }{ \frac{4 + 1}{4} } }

 \implies \displaystyle \sf{  {\tan}^{2}  \frac{ \theta}{2}  =  \frac{3 }{5} }

 \because \:  \:  \displaystyle \sf{  {270}^{ \circ}  &lt;  \theta &lt;  {360}^{ \circ} \: \:  }

 \therefore \:  \:  \displaystyle \sf{  {135}^{ \circ}  &lt;  \frac{ \theta}{2}  &lt;  {180}^{ \circ} \: \:   }

 \therefore \:  \:  \displaystyle \sf{    \frac{ \theta}{2}  \: \: lies \: in \: second \: quadrant  }

 \therefore \:  \:  \displaystyle \sf{   \tan  \frac{ \theta}{2}  \: \: \: is \: negative }

 \therefore \:  \:  \displaystyle \sf{  {\tan}^{2}  \frac{ \theta}{2}  =  \frac{3 }{5} } \:  \: gives

\displaystyle \sf{  {\tan} \frac{ \theta}{2}  =  -   \sqrt{ \frac{3 }{5} }}

FINAL ANSWER :-

 \boxed{\displaystyle \sf{  \:  \:  {\tan} \frac{ \theta}{2}  =  -   \sqrt{ \frac{3 }{5} }} \:  \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the Value of

3 + cot 80 cot 20/cot80+cot20

https://brainly.in/question/17024513

2. Prove that :

tan9A - tan6A -tan3A = tan9A.tan 6A.tan 3A

https://brainly.in/question/9394506


BrainlyPopularman: Nice
pulakmath007: Thank you Bro
Similar questions