If (28-x) is the mean proportional of (23-x) and (19-x) then find the value of x
Answers
Answered by
2
Answer:
x = 28
Step-by-step explanation:
(23-x) : (28-x) : : (28-x) : (19-x)
(23-x) × (28-x) = (28-x) × (19-x)
23 (28-x) - x (28-x) = 28 (19-x) - x (19-x)
(23×28 - 23×x) - (x×28 - x×x) = (28×19 - 28×x) - ( x×19 - x×x )
(644 - 23x) - (28x - x^2) = (532 - 28x) - (19x - x^2)
644 - 23x - 28x + x^2 = 532 - 28x - 19x + x^2
644 - 51x + x^2 = 532 - 47x + x^2
644 - 51x = 532 - 47x
644 - 532 = 51x - 47x
112 = 4x
x = 112 ÷ 4
x = 28
Answered by
0
Answer:
347/14
Step-by-step explanation:
If a, b and c are in proportional:
a/b = b/c or ac = b²
⇒ √ac = b
Where b is the mean proportional of a and c.
Here,
⇒ √(23 - x )(19 - x) = (28 - x)
⇒ (23 - x)(19 - x) = (28 - x)²
⇒ 437 - 23x - 19x + x² = 784 + x² - 56x
⇒ 56x - 42x = 784 - 437
⇒ x = 347/14
∴ value of x is 347/14
Similar questions