If 2a^2+9b^2+4c^2-4a-6b+4ac=-5,then the value of a^2-b^2+c^2 is equal to
Answers
Given: The term 2a^2 + 9b^2 + 4c^2 - 4a - 6b + 4ac = -5
To find: The value of a^2 - b^2 + c^2
Solution:
- Now we have given the value of 2a^2 + 9b^2 + 4c^2 - 4a - 6b + 4ac as -5.
- So, we can rewrite it as:
(a^2 + a^2 + 9b^2 - 6b + 4c^2 - 4a + 4ac ) = -5
- Now splitting the terms, we get:
(a^2 - 4a) + (9b^2 - 6b) +(a^2 + 4c^2 + 4ac ) = -5
- To make whole square, we will do:
(a^2 - 4a + 4 - 4) + (9b^2 - 6b + 1 - 1) + (a + 2c)^2 = -5
(a + 2)^2 + (3b - 1)^2 + (a + 2c)^2 - 4 - 1 = -5
(a + 2)^2 + (3b - 1)^2 + (a + 2c)^2 = 0
- Now:
(a + 2)^2 = 0
a = 2
(3b - 1)^2 = 0
b = 1/3
(a + 2c)^2 = 0
c = -a/2 = -2/2 = -1
- Now putting these values in a^2 - b^2 + c^2, we get:
a^2 - b^2 + c^2 = (2)^2 - (1/3)^2 + (-1)^2
= 4 - 1/9 + 1
= 44/9
Answer:
So the value of a^2 - b^2 + c^2 is 44/9.
Answer:
Step-by-step explanation: