Math, asked by babu154, 1 year ago

if 2a-2/a+1=0 find the value of a3-1/a3+2=?

Answers

Answered by hukam0685
40

Answer:

{a}^{3}  -  \frac{1}{ {a}^{3} }  + 2  =  \frac{3}{8}  \\

Step-by-step explanation:

If

2a -  \frac{2}{a}  + 1 = 0...eq1 \\

then to find the value of

 {a}^{3}  -  \frac{1}{ {a}^{3} }  + 2 \\  \\

take cube of eq1

2a -  \frac{2}{a}  =  - 1 \\  \\ a -  \frac{1}{a}  =  \frac{ - 1}{2}  \\  \\  {(a -  \frac{1}{a}) }^{3}  =  {( \frac{ - 1}{2} )}^{3}  \\  \\  {a}^{3}  -  \frac{1}{ {a}^{3} }  - 3 {a}^{2} ( \frac{1}{a} ) + 3a( \frac{1}{ {a}^{2} } ) =  -  \frac{1}{8}  \\  \\  {a}^{3}  -  \frac{1}{ {a}^{3} }  - 3a +  \frac{3}{a}  =  \frac{ - 1}{8}  \\  \\  {a}^{3}  -  \frac{1}{ {a}^{3} }  - 3(a  -   \frac{1}{a})  =  \frac{ - 1}{8}  \\  \\ {a}^{3}  -  \frac{1}{ {a}^{3} }  - 3( -   \frac{1}{2})  =  \frac{ - 1}{8}  \\  \\ {a}^{3}  -  \frac{1}{ {a}^{3} } +  \frac{3}{2}  =  \frac{ - 1}{8}

{a}^{3}  -  \frac{1}{ {a}^{3} }  + 2  =  \frac{ - 1}{8} - \frac{3}{2}  + 2 \\  \\  =  \frac{ - 1 - 12 + 16}{8}  \\  \\  {a}^{3}  -  \frac{1}{ {a}^{3} }  + 2  =  \frac{3}{8}  \\  \\

Hope it helps you.

Answered by asitsamantaasit8705
0

Answer:

2a-2/a+1=0 than a3-1/a3+2 what answer step

Similar questions