Math, asked by ruhi4430, 1 year ago

If 2a+3b=11 and ab=28,find 8a^3+27b^3

Answers

Answered by aaravshrivastwa
31

2a+3b=11
Squaring both sides,
(2a+3b)²=(11)²
(2a)²+(3b)²+12ab=121
(2a)²+(3b)²+336= 121
(2a)²+(3b)²=121-336= -215
Now,
8a³+27b³= (2a)³+(3b)³
8a³+27b³= (2a+3b){(2a)²+(3b)²-ab}
8a³+27b³= (11) {-215+28}
8a³+27b³= 11 x (-187)
8a³+27b³= -2057


Anonymous: not wondered?
aaravshrivastwa: No
Anonymous: can you give so much thanks in one answer?
aaravshrivastwa: Yeah I am very wonder
aaravshrivastwa: I can't give
aaravshrivastwa: How can you do this
Anonymous: you have to click on big heart button as fast as possible
aaravshrivastwa: You have clicked 30 times
Anonymous: 28
aaravshrivastwa: Yeah
Similar questions