If 2a+3b-13 and ab=6.Find the value of 8a^3+27b^3
Answers
Answered by
11
Correct question: If 2a + 3b = 13 and ab = 6. Find the value of 8a³ + 27b³.
Answer:
Step-by-step explanation:
Given that ;
- ab = 6
- 2a + 3b =13
⇒ 2a + 3b = 13
On cubing both sides -
⇒ (2a + 3b)³ = (13)³
⇒ (2a)³ + (3b)³ + 3 * 2a * 3b (2a + 3b) = 169
⇒ 8a³ + 27b³ + 18ab (13) = 169
⇒ 8a³ + 27b³ + 18 * 6 * 13 = 169
⇒ 8a³ + 27b³ + 1404 = 169
⇒ 8a³ + 27b³ = 169 - 1404
⇒ 8a³ + 27b³ = - 1235
Hence, the answer is (-1235).
- (a - b)³ = a³ - b³ - 3ab (a - b)
- (a + b)³ = a³ + b³ + 3ab (a + b)
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (x + a)(x + b) = x² + x(a + b) + ab
Answered by
9
☞ Your Answer = -1235
➳ 2a + 3b = 13
➳ ab = 6
➢ 8a³ + 27b³
On cubing both sides -
➳ (2a + 3b)³ = (13)³
➳ (2a)³ + (3b)³ + 3 * 2a * 3b (2a + 3b) = 169
➳ 8a³ + 27b³ + 18ab (13) = 169
➳ 8a³ + 27b³ + 18 * 6 * 13 = 169
➳ 8a³ + 27b³ + 1404 = 169
➳ 8a³ + 27b³ = 169 - 1404
➳
☆ (a+b)² = a²+2ab+b²
☆ (a-b)² = a²-2ab+b²
☆ (a+b)(a-b) = a²-b²
Similar questions