Math, asked by patelsaurin5319, 1 year ago

If 2a+3b-13 and ab=6.Find the value of 8a^3+27b^3

Answers

Answered by LovelyG
11

Correct question: If 2a + 3b = 13 and ab = 6. Find the value of 8a³ + 27b³.

Answer:

\large{\underline{\boxed{\sf  8a^3 + 27b^3 = - 1235}}}

Step-by-step explanation:

Given that ;

  • ab = 6
  • 2a + 3b =13

⇒ 2a + 3b = 13

On cubing both sides -

⇒ (2a + 3b)³ = (13)³

⇒ (2a)³ + (3b)³ + 3 * 2a * 3b (2a + 3b) = 169

⇒ 8a³ + 27b³ + 18ab (13) = 169

⇒ 8a³ + 27b³ + 18 * 6 * 13 = 169

⇒ 8a³ + 27b³ + 1404 = 169

⇒ 8a³ + 27b³ = 169 - 1404

⇒ 8a³ + 27b³ = - 1235

Hence, the answer is (-1235).

\rule{300}{2}

\large{\underline{\underline{\mathfrak{\heartsuit \: Algebraic \: Identity : \: \heartsuit}}}}

  • (a - b)³ = a³ - b³ - 3ab (a - b)
  • (a + b)³ = a³ + b³ + 3ab (a + b)
  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (x + a)(x + b) = x² + x(a + b) + ab
Answered by ғɪɴɴвαłσℜ
9

\huge\sf\pink{Answer}

☞ Your Answer = -1235

\rule{110}1

\huge\sf\blue{Given}

➳ 2a + 3b = 13

➳ ab = 6

\rule{110}1

\huge\sf\gray{To \:Find}

➢ 8a³ + 27b³

\rule{110}1

\huge\sf\purple{Steps}

On cubing both sides -

➳ (2a + 3b)³ = (13)³

➳ (2a)³ + (3b)³ + 3 * 2a * 3b (2a + 3b) = 169

➳ 8a³ + 27b³ + 18ab (13) = 169

➳ 8a³ + 27b³ + 18 * 6 * 13 = 169

➳ 8a³ + 27b³ + 1404 = 169

➳ 8a³ + 27b³ = 169 - 1404

\sf\orange{ 8a^3 + 27b^3 = - 1235}

\underline{\bullet{\sf{ \;More\: Identities}}}

☆ (a+b)² = a²+2ab+b²

☆ (a-b)² = a²-2ab+b²

☆ (a+b)(a-b) = a²-b²

\rule{170}3

Similar questions