Math, asked by Anonymous, 2 months ago

If 2a - 3b + 4c = 0 , then show that 8a³ - 27b³ + 64c³ + 72abc = 0

━━━━━━━━━━━━━━━━━

Answers

Answered by adityadabb75
1

Answer:

We have,

2a+3b+c=0

2a+3b=−c …….. (1)

On taking cube both sides, we get

(2a+3b)

3

=(−c)

3

8a

3

+27b

3

+3×2a×3b(2a+3b)=−c

3

8a

3

+27b

3

+18ab(2a+3b)=−c

3

From equation (1),

8a

3

+27b

3

+18ab(−c)=−c

3

8a

3

+27b

3

−18abc=−c

3

8a

3

+27b

3

+c

3

=18abc

Hence, proved.

Answered by tennetiraj86
5

Step-by-step explanation:

Given :-

2a -3b +4c = 0

To find:-

Show that 8a^3 -27b^3 +64c^3+72abc = 0

Solution:-

Given that

2a -3b +4c = 0 -------------(1)

Method-1:-

We know that

If a + b+ c = 0then a^3+b^3+c^3 = 3abc

On applying this to the equation (1)

Where a = 2a; b = -3b ; c = 4c

Now ,

If 2a -3b +4c = 0 then (2a)^3+(-3b)^3 + (4c)^3 =3(2a)(-3b)(4c)

=> 8a^3 +(-27b^3)+(64c^3)= - 72abc

=> 8a^3 -27b^3+64c^3= -72abc

=>8a^3 -27b^3+64c^3+72abc = 0

Method-2:-

Given that

2a -3b +4c = 0

2a -3b = -4c -------------(1)

On cubing both sides then

=> (2a-3b)^3 = (-4c)^3

We know that

(a-b)^3 = a^3-3ab(a-b)-b^3

Where a = 2a and b= 3b

=> (2a)^3-3(2a)(3b)(2a-3b)-(3b)^3 = -64c^3

=> 8a^3-18ab(2a-3b)-27b^3 = -64c^3

=> 8a^3-18ab(-4c)-27b^3 = -64c^3

(from (1))

=> 8a^3+72abc-27b^3 = -64c^3

=> 8a^3+72abc-27b^3+64c^3 = 0

=> 8a^3-27b^3+64c^3+72abc = 0

Hence, Proved.

Answer:-

If 2a-3b+4c=0 then 8a^3-27b^3+64c^3+72abc=0

Used formulae:-

  • (a-b)^3 = a^3-3ab(a-b)-b^3

  • If a + b+ c = 0then a^3+b^3+c^3 = 3abc
Similar questions