Math, asked by lavish1906, 2 months ago

if 2a=3b=6c then show that c= ab/a+b

Answers

Answered by nandigamlokeshkumar
2

Answer:

2a=3b=6c then c=ab/a+b

c=2×3/2+3

c=6/5 c=1.2

Answered by MrImpeccable
9

QUESTION:

  • If 2^a = 3^b = 6^c, show that c = ab/(a + b)

ANSWER:

Given:

  • 2^a=3^b=6^c

To Prove:

  • c = ab/(a + b)

Proof:

We are given that,

\implies\sf 2^a=3^b=6^c

Let these be equal to a constant k. That is,

\implies\sf 2^a=3^b=6^c=k

So,

\implies\sf 2^a=k

\implies\sf 2=k^{\frac{1}{a}} - - - - -(1)

Similarly,

\implies\sf 3^b=k

\implies\sf 3=k^{\frac{1}{b}} - - - - -(2)

And,

\implies\sf 6^c=k

\implies\sf 6=k^{\frac{1}{c}}

We can write it as,

\implies\sf (2\times3)=k^{\frac{1}{c}}

Substituting values of 2 and 3 from (1) and (2),

\implies\sf (k^{\frac{1}{a}}\times k^{\frac{1}{b}})=k^{\frac{1}{c}}

So,

\implies\sf k^{\frac{1}{a}+\frac{1}{b}}=k^{\frac{1}{c}}

\implies\sf k^{\frac{a+b}{ab}}=k^{\frac{1}{c}}

As, the bases are same(k), we compare the powers,

\implies\sf\dfrac{a+b}{ab}=\dfrac{1}{c}

So,

\implies\bf c=\dfrac{a+b}{a+b}

HENCE PROVED!!!

Similar questions