Math, asked by somnath2k20, 9 months ago

If 2a+3b+c=0,then find the value of (2a)^3+(3b)^3+c^3​

Answers

Answered by patnanasailalith
0

thank u for sending this to me and mark in brain list

Attachments:
Answered by BrainlyIAS
1

Answer:

If 2a+3b+c=0,then find the value of (2a)^3+(3b)^3+c^3​2a+3b+c=0\\\\ (a + b + c)^{3} = a^{3} + b^{3} + c^{3}+3a^{2}b+3a^{2}c + 3b^{2}c +3b^{2}a +3c^{2}a +3c^{2}a+6abc.\\\\=> (2a+3b+c)^{3}=0^{3}\\\\=>(2a)^{3}+(3b)^{3}+c^{3}+3(2a)^{2}(3b)+3(2a)^{2}c + 3(3b)^{2}c +3(3b)^{2}(2a) +3c^{2}(2a) +3c^{2}(2a)+6(2a)(3b)c=0\\\\=>(2a)^{3}+(3b)^{3}+c^{3}=-[(2a)^{2}(3b)+3(2a)^{2}c + 3(3b)^{2}c +3(3b)^{2}(2a) +3c^{2}(2a) +3c^{2}(2a)+6(2a)(3b)c]\\\\=>(2a)^{3}+(3b)^{3}+c^{3}=-(2a)^{2}(3b)-3(2a)^{2}c - 3(3b)^{2}c -3(3b)^{2}(2a) -3c^{2}(2a) -3c^{2}(2a)-6(2a)(3b)c

Hope helps u..

Similar questions