If 2a+b+3c = 0, then 8a3+b3+27c3 is ....
Answers
Answered by
26
Step-by-step explanation:
Given that :2a+b+3c=0
=>2a+b=-3c --------(1)
Cubing on both sides then
(2a+b)³=(-3c)³
We know that (a+b)³=a³+3ab(a+b)+b³
Here , a=2a and b=b
=>(2a)³+3(2a)(b)(2a+b)+b³=-27c³
=>8a³+6ab(2a+b)+b³=-27c³
=>8a³+b³+6ab(-3c)=-27c³ (from(1))
=>8a³+b³-18abc=-27c³
=>8a³+b³+27c³=18abc
(or)
We know that
a+b+c=0 then a³+b³+c³=3abc
here a=2a;b=b;c=3c
it is given that
2a+b+3c=0
=>(2a)³+b³+(3c)³=3(2a)(b)(3c)
=>8a³+b³+27c³=18abc
Similar questions