Math, asked by AbhinavRocks10, 5 hours ago


If 2a – b + c =0 Prove that \sf 4a²–b²+c²+4ac=0

NOTE
⊙ NO SPAM
⊙ NEED QUALITY ANSWERS​

Answers

Answered by Anonymous
74

Answer:

hey mate here is ur answer..

If 2a – b + c =0 Prove that \sf 4a²–b²+c²+4ac=0

2a+c =b

2a+c =b=>(2a+c)²=b²

2a+c =b=>(2a+c)²=b²=>4a²+4ac+c²=b²

2a+c =b=>(2a+c)²=b²=>4a²+4ac+c²=b²=>4a²-b²+c²+4ac=0 [proved]

☮️hopes it helps you ..

tq

Answered by Anonymous
8

\impliesIn order to prove that \rm[4a^{2}-b^{2}+c^{2}+4ac=0](eq2) It will be enough to prove that this equation is equal to the given equation(eq1):

\rm{4a^{2}+c^{2}+4ac=b^{2}}

\rm{(2a+c)^{2}=b^{2}}

\rm{2a+c=b}

\rm{2a+c-b=0}

From this we get eq1=eq2

\large\bf{ Hence \: proved. }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\tiny\tt{Hope \: this \: will \: help \: you }

Similar questions