Math, asked by priyashabaaduwal, 6 months ago

If 2a°, 3a°,4a° and 6a° are the the angles of a quadrilateral, find them
Please show in full process

Answers

Answered by kaur24komal2004
0

Answer:

Sum of angles :- 2a° + 3a° + 4a° +6a° = 360°

15 a° = 360°

a° = 360°/15

a°= 24°

put a°=24° in

2a°=2(24°) =48°

3a°= 3(24°) =72°

4a° = 4(24°) =96°

6a° = 6(24°) =144°

Verify :- 48° + 72° +96° +144° = 360 °

360° = 360°

Hence , this is correct .

Answered by Anonymous
26

\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}

If 2a°, 3a°,4a° and 6a° are the the angles of a quadrilateral, find them

\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}

Angles of the quadrilateral are given = 2a°, 3a°,4a° and 6a°

\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}

The angles of the triangle.

\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}

First we need to find the value of a to find the value of the angles of the quadrilateral:–

 \large\underbrace{ \sf { We \: know \: angles \: of \: a \: quadrilateral\: = 360 ^ \circ}}

 \qquad \quad :  \longrightarrow \sf{2a + 3a + 4a + 6a = 360} \\

\qquad \quad :  \longrightarrow \sf{15a = 360}

\qquad \quad :  \longrightarrow \sf{a =  \dfrac{ \cancel{360}^{ \large24} }{ \cancel{15}} _ {\large{1}} }

\qquad \quad :  \leadsto  \underline{\boxed{\sf \pink{a = 24}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Now when we know the value of a let find the angles of the quadrilateral:–

\qquad \quad \bull \sf \quad{2a = 2 \times 24 =  \pink{48 ^ \circ}}

\qquad \quad \bull \sf \quad{3a = 3 \times 24 =  \pink{72 ^ \circ}}

\qquad \quad \bull \sf \quad{4a = 4 \times 24 = \pink{96 ^{ \circ}}  }

\qquad \quad \bull \sf \quad{6a = 6 \times 24 =  \pink{144   ^ \circ}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions